1. Prove that there is no $q \in \mathbb{Q}$ with $q^{2}=3$. Informally speaking, the question asks to prove that $\sqrt{3}$ is not rational.

2. Equivalence relations induced by functions.

(a) For a function $f: X \rightarrow Y$, define a binary relation E_{f} on X by

$$
x_{0} E_{f} x_{1}: \Leftrightarrow f\left(x_{0}\right)=f\left(x_{1}\right) .
$$

Prove that E_{f} is an equivalence relation. We call it the equivalence relation induced by f.
(b) Let $E_{\mathbb{Z}}$ be the binary relation on \mathbb{R} defined by $x E_{\mathbb{Z}} y: \Leftrightarrow x-y \in \mathbb{Z}$. Prove that $E_{\mathbb{Z}}$ is an equivalence relation and find a function $f: \mathbb{R} \rightarrow[0,1)$ such that $E_{\mathbb{Z}}=E_{f}$.
(c) More generally, for any equivalence relation E on a set X, find a set Y and a function $f: X \rightarrow Y$ such that $E=E_{f}$.
Hint: Quotient by E.
3. Let $F(\mathbb{Q})$ denote the set of all functions $\mathbb{Q} \rightarrow \mathbb{R}$, so each element $f \in F(\mathbb{Q})$ is a function from \mathbb{Q} to \mathbb{R}. Define a function $\delta_{0}: F(\mathbb{Q}) \rightarrow \mathbb{R}$ by mapping each $f \in F(\mathbb{Q})$ to its value at 0 , i.e. $\delta_{0}(f):=f(0)$. This function is called the Dirac distribution at 0 .
(a) Prove that δ_{0} is surjective.
(b) Explicitly define two distinct right-inverses for δ_{0}.
(c) Letting $M_{<}(\mathbb{Q})$ be the subset of $F(\mathbb{Q})$ of all strictly increasing functions, determine the sets $\delta_{0}\left(M_{<}(\mathbb{Q})\right)$ and $\delta_{0}\left(M_{<}(\mathbb{Q})^{c}\right)$.
(d) Determine the set $\delta_{0}^{-1}(\mathbb{Z})$.
4. Let $F(\mathbb{R})$ denote the set of all functions $\mathbb{R} \rightarrow \mathbb{R}$. The composition $f \circ g$ of two functions $f, g \in F(\mathbb{R})$ is a binary operation on $F(\mathbb{R})$. Determine whether
(a) \circ is associative;
(b) \circ is commutative;
(c) there is a o-identity;
(d) every $f \in F(\mathbb{R})$ has a o-inverse.

Prove each of your answers. If an answer is negative, provide an explicit counterexample.
5. For sets A, B, recall that we write $A \cong B$ to mean that there is a bijection $A \xrightarrow{\sim} B$; in this case, we say that A and B are equinumerous. Prove that the following sets are equinumerous with \mathbb{N}.
(a) \mathbb{N}^{+}.
(b) The set of all odd numbers natural numbers;
(c) \mathbb{Z};
(d) The set of all integers divisible by 6 ;
(e) \mathbb{N}^{2};
(f) \mathbb{N}^{7}.

