Math 347H: Fundamental Math (H) Номеwork 7 Due date: Nov 9 (Thu)

1. Prove that there is no $q \in \mathbb{Q}$ with $q^2 = 3$. Informally speaking, the question asks to prove that $\sqrt{3}$ is not rational.

2. Equivalence relations induced by functions.

(a) For a function $f : X \to Y$, define a binary relation E_f on X by

$$x_0 E_f x_1 :\Leftrightarrow f(x_0) = f(x_1).$$

Prove that E_f is an equivalence relation. We call it the equivalence relation induced by f.

- (b) Let $E_{\mathbb{Z}}$ be the binary relation on \mathbb{R} defined by $xE_{\mathbb{Z}}y :\Leftrightarrow x y \in \mathbb{Z}$. Prove that $E_{\mathbb{Z}}$ is an equivalence relation and find a function $f : \mathbb{R} \to [0, 1)$ such that $E_{\mathbb{Z}} = E_f$.
- (c) More generally, for any equivalence relation *E* on a set *X*, find a set *Y* and a function $f : X \to Y$ such that $E = E_f$.

HINT: Quotient by *E*.

- **3.** Let $F(\mathbb{Q})$ denote the set of all functions $\mathbb{Q} \to \mathbb{R}$, so each element $f \in F(\mathbb{Q})$ is a function from \mathbb{Q} to \mathbb{R} . Define a function $\delta_0 : F(\mathbb{Q}) \to \mathbb{R}$ by mapping each $f \in F(\mathbb{Q})$ to its value at 0, i.e. $\delta_0(f) := f(0)$. This function is called the *Dirac distribution* at 0.
 - (a) Prove that δ_0 is surjective.
 - (b) Explicitly define two distinct right-inverses for δ_0 .
 - (c) Letting $M_{<}(\mathbb{Q})$ be the subset of $F(\mathbb{Q})$ of all strictly increasing functions, determine the sets $\delta_0(M_{<}(\mathbb{Q}))$ and $\delta_0(M_{<}(\mathbb{Q})^c)$.
 - (d) Determine the set $\delta_0^{-1}(\mathbb{Z})$.
- **4.** Let $F(\mathbb{R})$ denote the set of all functions $\mathbb{R} \to \mathbb{R}$. The composition $f \circ g$ of two functions $f, g \in F(\mathbb{R})$ is a binary operation on $F(\mathbb{R})$. Determine whether
 - (a) o is associative;
 - (b) o is commutative;
 - (c) there is a \circ -identity;
 - (d) every $f \in F(\mathbb{R})$ has a \circ -inverse.

Prove each of your answers. If an answer is negative, provide an explicit counterexample.

- **5.** For sets *A*, *B*, recall that we write $A \cong B$ to mean that there is a bijection $A \xrightarrow{\sim} B$; in this case, we say that *A* and *B* are *equinumerous*. Prove that the following sets are equinumerous with \mathbb{N} .
 - (a) \mathbb{N}^+ .
 - (b) The set of all odd numbers natural numbers;

- (c) **Z**;
- (d) The set of all integers divisible by 6;
- (e) **№**²;
- (f) \mathbb{N}^7 .